$$D_MD_RDF$$: diabetes mellitus and retinopathy detection framework using artificial intelligence and feature selection

Author:

Balaha Hossam Magdy,El-Gendy Eman M.ORCID,Saafan Mahmoud M.

Abstract

AbstractDiabetes mellitus is one of the most common diseases affecting patients of different ages. Diabetes can be controlled if diagnosed as early as possible. One of the serious complications of diabetes affecting the retina is diabetic retinopathy. If not diagnosed early, it can lead to blindness. Our purpose is to propose a novel framework, named $$D_MD_RDF$$ D M D R D F , for early and accurate diagnosis of diabetes and diabetic retinopathy. The framework consists of two phases, one for diabetes mellitus detection (DMD) and the other for diabetic retinopathy detection (DRD). The novelty of DMD phase is concerned in two contributions. Firstly, a novel feature selection approach called Advanced Aquila Optimizer Feature Selection ($$A^2OFS$$ A 2 O F S ) is introduced to choose the most promising features for diagnosing diabetes. This approach extracts the required features from the results of laboratory tests while ignoring the useless features. Secondly, a novel classification approach (CA) using five modified machine learning (ML) algorithms is used. This modification of the ML algorithms is proposed to automatically select the parameters of these algorithms using Grid Search (GS) algorithm. The novelty of DRD phase lies in the modification of 7 CNNs using Aquila Optimizer for the classification of diabetic retinopathy. The reported results concerning the DMD datasets shows that AO reports best performance metrics in the feature selection process with the help of modified ML classifiers. The best achieved accuracy is 98.65% with the GS-ERTC model and max-absolute scaling on the “Early Stage Diabetes Risk Prediction Dataset” dataset. Also, from the reported results concerning the DRD datasets, the AOMobileNet is considered a suitable model for this problem as it outperforms the other modified CNN models with accuracy of 95.80% on the “The SUSTech-SYSU dataset” dataset.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3