Deep learning algorithm development for river flow prediction: PNP algorithm

Author:

Bak GwimanORCID,Bae YoungchulORCID

Abstract

AbstractDeep learning algorithms developed in recent decades have performed well in prediction and classification using accumulated big data. However, as climate change has recently become a more serious global problem, natural disasters are occurring frequently. When analyzing natural disasters from the perspective of a data analyst, they are considered as outliers, and the ability to predict outliers (natural disasters) using deep learning algorithms based on big data acquired by computers is limited. To predict natural disasters, deep learning algorithms must be enhanced to be able to predict outliers based on information such as the correlation between the input and output. Thus, algorithms that specialize in one field must be developed, and specialized algorithms for abnormal values must be developed to predict natural disasters. Therefore, considering the correlation between the input and output, we propose a positive and negative perceptron (PNP) algorithm to predict the flow rate of rivers using climate change-sensitive precipitation. The PNP algorithm consists of a hidden deep learning layer composed of positive and negative neurons. We built deep learning models using the PNP algorithm to predict the flow of three rivers. We also built comparative deep learning models using long short-term memory (LSTM) to validate the performance of the PNP algorithm. We compared the predictive performance of each model using the root mean square error and symmetric mean absolute percentage error and demonstrated that it performed better than the LSTM algorithms .

Funder

Valve Center from the Regional Innovation Cente

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Reference50 articles.

1. Abidin HZ, Djaja R, Darmawan D, Hadi S, Akbar A, Rajiyowiryono H, Subarya C (2001) Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Nat Hazards 23(2):365–387

2. Asgari Taghanaki S, Abhishek K, Cohen JP, Cohen-Adad J, Hamarneh G (2021) Deep semantic segmentation of natural and medical images: a review. Artif Intell Rev 54(1):137–178

3. Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271

4. Bordes A, Glorot X, Weston J, Bengio Y (2012) Joint learning of words and meaning representations for open-text semantic parsing. In: Artificial intelligence and statistics. PMLR. 127–135

5. Borovykh A, Bohte S, Oosterlee CW (2017) Conditional time series forecasting with convolutional neural networks. arXiv preprint arXiv:1703.04691

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3