Multiple arbitrarily inflated negative binomial regression model and its application

Author:

Abusaif IhabORCID,Kuş Coşkun

Abstract

AbstractThis paper introduces a novel modification of the negative binomial distribution, which serves as a generalization encompassing both negative binomial and zero-inflated negative binomial distributions. This innovative distribution offers flexibility by accommodating an arbitrary number of inflation points at various locations. The paper explores key distributional properties associated with this modified distribution. Additionally, this study proposes several estimators designed to obtain estimates for the unknown parameters. Furthermore, the paper introduces a new count regression model that utilizes the modified distribution. To assess the performance of the proposed distribution and the count regression model, a comprehensive Monte Carlo simulation study is conducted. In the final stage of the paper, a real-world dataset is scrutinized to ascertain the superiority of the proposed model. This empirical analysis contributes to validating the practical applicability and effectiveness of the newly introduced distribution in comparison to existing models.

Funder

Selcuk University

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. Abusaif I, Kuş C (2023) Multiple arbitrarily inflated poisson regression analysis. Submitted paper

2. Alshkaki RSA (2017) Moment estimators of the parameters of zero-one inflated negative binomial distribution. Int J Math Comput Sci 11(1):38–41

3. Arora M (2018) Extended poisson models for count data with inflated frequencies. Old Dominion University,

4. Arora M, Chaganty NR (2021) Em estimation for zero-and k-inflated poisson regression model. Computation 9(9):94

5. Arora M, Chaganty NR (2021) Em estimation for zero-and k-inflated poisson regression model. Computation 9(9):94

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3