A novel feed-through Elman neural network for predicting the compressive and flexural strengths of eco-friendly jarosite mixed concrete: design, simulation and a comparative study
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s00500-023-08195-9.pdf
Reference53 articles.
1. Akkurt S, Tayfur G, Can S (2004) Fuzzy logic model for the prediction of cement compressive strength. Cem Concr Res 34(8):1429–1433
2. Alshihri MM, Azmy AM, El-Bisy MS (2009) Neural networks for predicting compressive strength of structural light weight concrete. Constr Build Mater 23(6):2214–2219
3. Asokan P, Saxena M, Asolekar S (2010) Recycling hazardous jarosite waste using coal combustion residues. Mater Charact 61(12):1342–1355
4. Asteris PG, Mokos VG (2020) Concrete compressive strength using artificial neural networks. Neural Comput Appl 32(15):11807–11826
5. Bai J, Wild S, Ware J, Sabir B (2003) Using neural networks to predict workability of concrete incorporating metakaolin and fly ash. Adv Eng Softw 34(11–12):663–669
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improving the classification of a nanocomposite using nanoparticles based on a meta-analysis study, recurrent neural network and recurrent neural network Monte-Carlo algorithms;Nanocomposites;2024-07-08
2. New Aczel–Alsina components for bipolar fuzzy numbers and their use in multi-attribute decision making;Engineering Applications of Artificial Intelligence;2024-06
3. A three-loop physical parameter identification method of robot manipulators considering physical feasibility and nonlinear friction model;Nonlinear Dynamics;2024-05-31
4. A real-time and accurate convolutional neural network for fabric defect detection;Complex & Intelligent Systems;2024-02-02
5. Deep learning-based concrete compressive strength prediction with modified resilient backpropagation training;International Journal of Intelligent Engineering Informatics;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3