A genetic programming-based approach for classifying pancreatic adenocarcinoma: the SICED experience

Author:

D’Angelo Gianni,Scoppettuolo Maria Nunzia,Cammarota Anna Lisa,Rosati Alessandra,Palmieri Francesco

Abstract

AbstractDuctal adenocarcinoma of the pancreas is a cancer with a high mortality rate. Among the main reasons for this baleful prognosis is that, in most patients, this neoplasm is diagnosed at a too advanced stage. Clinical oncology research is now particularly focused on decoding the cancer molecular onset by understanding the complex biological architecture of tumor cell proliferation. In this direction, machine learning has proved to be a valid solution in many sectors of the biomedical field, thanks to its ability to mine useful knowledge by biological and genetic data. Since the major risk factor is represented by genetic predisposition, the aim of this study is to find a mathematical model describing the complex relationship existing between genetic mutations of the involved genes and the onset of the disease. To this end, an approach based on evolutionary algorithms is proposed. In particular, genetic programming is used, which allows solving a symbolic regression problem through the use of genetic algorithms. The identification of these correlations is a typical objective of the diagnostic approach and is one of the most critical and complex activities in the presence of large amounts of data that are difficult to correlate through traditional statistical techniques. The mathematical model obtained highlights the importance of the complex relationship existing between the different gene’s mutations present in the tumor tissue of the group of patients considered.

Funder

Regione Campania

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3