Data-driven Methods to Predict the Burst Strength of Corroded Line Pipelines Subjected to Internal Pressure
Author:
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Ocean Engineering
Link
https://link.springer.com/content/pdf/10.1007/s11804-022-00263-0.pdf
Reference59 articles.
1. Abbas M, Shafiee M (2020) An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Marine Structures 71: 102718. https://doi.org/10.1016/j.marstruc.2020.102718
2. Amaya-Gómez R, Sánchez-Silva M, Bastidas-Arteaga E, Schoefs F, Munoz F (2019) Reliability assessments of corroded pipelines based on internal pressure a review. Engineering Failure Analysis 98: 190–214. https://doi.org/10.1016/j.engfailanal.2019.01.064
3. Amaya-Gómez R, Sánchez-Silva M, Muñoz F (2016) Pattern recognition techniques implementation on data from in-line inspection (ili). Journal of Loss Prevention in the Process Industries 44: 735–747. https://doi.org/10.1016/j.jlp.2016.07.020
4. ASME B31G, A (1991) Manual for determining the remaining strength of corroded pipelines. ASME B31G-1991
5. ASME B31G, A (2012) Manual for Determining the Remaining Strength of Corroded Pipelines: A Supplement to ASME B31 Code for Pressure Piping: an American National Standard. American Society of Mechanical Engineers
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Application of artificial intelligence hybrid models in safety assessment of submarine pipelines: Principles and methods;Ocean Engineering;2024-11
2. Energy pipeline degradation condition assessment using predictive analytics – challenges, issues, and future directions;Journal of Pipeline Science and Engineering;2024-09
3. Prediction of Pipe Failure Rate in Heating Networks Using Machine Learning Methods;Energies;2024-07-17
4. Analysis of machine learning models and data sources to forecast burst pressure of petroleum corroded pipelines: A comprehensive review;Engineering Failure Analysis;2024-01
5. Modal Analysis of the Hydrodynamic Force of a Capsule in a Hydraulic Capsule Pipeline;Journal of Marine Science and Engineering;2023-09-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3