Estimating Design Loads for Floating Structures Using Environmental Contours

Author:

Liao Zhenkun,Zhao Yuliang,Dong Sheng

Abstract

AbstractNonlinear time-domain simulations are often used to predict the structural response at the design stage to ensure the acceptable operation and/or survival of floating structures under extreme conditions. An environmental contour (EC) is commonly employed to identify critical sea states that serve as the input for numerical simulations to assess the safety and performance of marine structures. In many studies, marginal and conditional distributions are defined to construct bivariate joint probability distributions for variables, such as significant wave height and zero-crossing period. Then, ECs can be constructed using the inverse first-order reliability method (IFORM). This study adopts alternative models to describe the generalized dependence structure between environmental variables using copulas and discusses the Nataf transformation as a special case. ECs are constructed using measured wave data from moored buoys. Derived design loads are applied on a semisubmersible platform to assess possible differences. In addition, a linear interpolation scheme is utilized to establish a parametric model using short-term extreme tension distribution parameters and wave data, and the long-term tension response is estimated using Monte Carlo simulation. A 3D IFORM-based approach, in which the short-term extreme response that is ignored in the EC approach is used as the third variable, is proposed to help establish accurate design loads with increased accuracy. Results offer a clear illustration of the extreme responses of floating structures based on different models.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3