Author:
Cho Sang-Rai,Muttaqie Teguh,Lee Seung Hyun,Paek Jaewoo,Sohn Jung Min
Abstract
AbstractThis paper focusses on steel-welded hemispherical shells subjected to external hydrostatic pressure. The experimental and numerical investigations were performed to study their failure behaviour. The model was fabricated from mild steel and made through press forming and welding. We therefore considered the effect of initial shape imperfection, variation of thickness and residual stress obtained from the actual structures. Four hemisphere models designed with R/t from 50 to 130 were tested until failure. Prior to the test, the actual geometric imperfection and shell thickness were carefully measured. The comparisons of available design codes (PD 5500, ABS, DNV-GL) in calculating the collapse pressure were also highlighted against the available published test data on steel-welded hemispheres. Furthermore, the nonlinear FE simulations were also conducted to substantiate the ultimate load capacity and plastic deformation of the models that were tested. Parametric dependence of the level of sphericity, varying thickness and residual welding stresses were also numerically considered in the benchmark studies. The structure behaviour from the experiments was used to verify the numerical analysis. In this work, both collapse pressure and failure mode in the numerical model were consistent with the experimental model.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Ocean Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献