Reliability of whole mount radical prostatectomy histopathology as the ground truth for artificial intelligence assisted prostate imaging

Author:

Jager AukeORCID,Postema Arnoud W.,van der Linden Hans,Nooijen Peet T.G.A.,Bekers Elise,Kweldam Charlotte F.,Daures Gautier,Zwart Wim,Mischi M.,Beerlage Harrie P.,Oddens Jorg R.

Abstract

AbstractThe development of artificial intelligence–based imaging techniques for prostate cancer (PCa) detection and diagnosis requires a reliable ground truth, which is generally based on histopathology from radical prostatectomy specimens. This study proposes a comprehensive protocol for the annotation of prostatectomy pathology slides. To evaluate the reliability of the protocol, interobserver variability was assessed between five pathologists, who annotated ten radical prostatectomy specimens consisting of 74 whole mount pathology slides. Interobserver variability was assessed for both the localization and grading of PCa. The results indicate excellent overall agreement on the localization of PCa (Gleason pattern ≥ 3) and clinically significant PCa (Gleason pattern ≥ 4), with Dice similarity coefficients (DSC) of 0.91 and 0.88, respectively. On a per-slide level, agreement for primary and secondary Gleason pattern was almost perfect and substantial, with Fleiss Kappa of .819 (95% CI .659–.980) and .726 (95% CI .573–.878), respectively. Agreement on International Society of Urological Pathology Grade Group was evaluated for the index lesions and showed agreement in 70% of cases, with a mean DSC of 0.92 for all index lesions. These findings show that a standardized protocol for prostatectomy pathology annotation provides reliable data on PCa localization and grading, with relatively high levels of interobserver agreement. More complicated tissue characterization, such as the presence of cribriform growth and intraductal carcinoma, remains a source of interobserver variability and should be treated with care when used in ground truth datasets.

Funder

Angiogenesis Analytics

European Union

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3