H3K27m3 overexpression as a new, BCL2 independent diagnostic tool in follicular and cutaneous follicle center lymphomas

Author:

Brune Magdalena M.,Vela Visar,Bratic Hench Ivana,Dertinger Susanne,Borgmann Vanessa,Dirnhofer Stefan,Tzankov AlexandarORCID

Abstract

AbstractApproximately 15% of follicular lymphomas (FL) lack overexpression of BCL2 and the underlying translocation t(14;18). These cases can be diagnostically challenging, especially regarding follicular hyperplasia (FH). In a subset of FL, mutations in genes encoding for epigenetic modifiers, such as the histone-lysine N-methyltransferase EZH2 (enhancer of zeste homolog 2), were found, which might be used diagnostically. These molecular alterations can lead to an increased tri-methylation of histone H3 at position lysine 27 (H3K27m3) that, in turn, can be visualized immunohistochemically. The aim of this study was to analyze the expression of H3K27m3 in FL, primary cutaneous follicle center lymphomas (PCFCL), and pediatric-type FL (PTFL) in order to investigate its value in the differential diagnosis to FH and other B cell lymphomas and to correlate it to BCL2 expression and the presence of t(14;18). Additionally, the mutational profile of selected cases was considered to address H3K27m3’s potential use as a surrogate parameter for mutations in genes encoding for epigenetic modifiers. Eighty-nine percent of FL and 100% of PCFCL cases overexpressed H3K27m3, independently of BCL2, EZH2, and the presence of mutations. In contrast, 95% of FH and 100% of PTFL cases lacked H3K27m3 overexpression. Other B cell lymphomas considered for differential diagnosis also showed overexpression of H3K27m3 in the majority of cases. In summary, overexpression of H3K27m3 can serve as a new, BCL2 independent marker in the differential diagnosis of FL and PCFCL, but not PTFL, to FH, while being not of help in the differential diagnosis of FL to other B cell lymphomas.

Funder

University of Basel

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3