Tensorial generalization of characters

Author:

Itoyama H.,Mironov A.,Morozov A.

Abstract

Abstract In rainbow tensor models, which generalize rectangular complex matrix model (RCM) and possess a huge gauge symmetry U(N 1) × … × U(N r ), we introduce a new sub-basis in the linear space of gauge invariant operators, which is a redundant basis in the space of operators with non-zero Gaussian averages. Its elements are labeled by r-tuples of Young diagrams of a given size equal to the power of tensor field. Their tensor model averages are just products of dimensions: $$ \left\langle \chi {R}_1,\dots, {R}_r\right\rangle \sim {C}_{R_1},\dots {,}_{R_r}\left({N}_1\right)\dots {D}_{R_r}\left({N}_r\right) $$ χ R 1 R r C R 1 , , R r N 1 D R r N r of representations R i of the linear group SL(N i ), with $$ {C}_{R_1},\dots {,}_{R_r} $$ C R 1 , , R r , made of the Clebsch­Gordan coefficients of representations R i of the symmetric group. Moreover, not only the averages, but the operators $$ {\chi}_{\overrightarrow{R}} $$ χ R themselves exist only when these $$ {C}_{\overrightarrow{R}} $$ C R are non-vanishing. This sub-basis is much similar to the basis of characters (Schur functions) in matrix models, which is distinguished by the property \character) ~ character, which opens a way to lift the notion and the theory of characters (Schur functions) from matrices to tensors. In particular, operators $$ {\chi}_{\overrightarrow{R}} $$ χ R are eigenfunctions of operators which generalize the usual cut-and­join operators $$ \hat{W} $$ W ̂ ; they satisfy orthogonality conditions similar to the standard characters, but they do not form a full linear basis for all gauge-invariant operators, only for those which have non-vanishing Gaussian averages.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference59 articles.

1. R. Gurau et al., SIGMA. Vol. 12: Special Issue on Tensor Models, Formalism and Applications, http://jwww.emis.de/journals/SIGMA/Tensor_Models.html, Materials of the 2nd French-Russian Conference on Random Geometry and Physics, Paris France (2016), http://www.th.u-psud.fr/RGP16/.

2. E. Witten, An SYK-Like Model Without Disorder, J. Phys.A 52 (2019) 474002 [arXiv: 1610.09758] [INSPIRE].

3. R. Gurau, The complete 1/ N expansion of a SYK-like tensor model, Nucl. Phys.B 916 (2017) 386 [arXiv: 1611.04032] [INSPIRE].

4. R. Gurau, Quenched equals annealed at leading order in the colored SYK model, EPL119 (2017) 30003 [arXiv:1702.04228] [INSPIRE].

5. I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev.D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3