Sharpening the boundaries between flux landscape and swampland by tadpole charge

Author:

Ishiguro KeiyaORCID,Otsuka Hajime

Abstract

Abstract We investigate the vacuum structure of four-dimensional effective theory arising from Type IIB flux compactifications on a mirror of the rigid Calabi-Yau threefold, corresponding to a T-dual of the DeWolfe-Giryavets-Kachru-Taylor model in Type IIA flux compactifications. By analyzing the vacuum structure of this interesting corner of string landscape, it turns out that there exist perturbatively unstable de Sitter (dS) vacua in addition to supersymmetric and non-supersymmetric anti-de Sitter vacua. On the other hand, the stable dS vacua appearing in the low-energy effective action violate the tadpole cancellation condition, indicating a strong correlation between the existence of dS vacua and the flux-induced D3-brane charge (tadpole charge). We also find analytically that the tadpole charge constrained by the tadpole cancellation condition emerges in the scalar potential in a nontrivial way. Thus, the tadpole charge would restrict the existence of stable dS vacua, and this fact underlies the statement of the dS conjecture. Furthermore, our analytical and numerical results exhibit that distributions of $$ \mathcal{O}(1) $$ O 1 parameters in expressions of several swampland conjectures peak at specific values.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stabilizing massless fields with fluxes in Landau-Ginzburg models;Journal of High Energy Physics;2024-08-08

2. Flux Landscape with enhanced symmetry not on SL(2, ℤ) elliptic points;Journal of High Energy Physics;2024-02-14

3. Extensions of a scale-separated AdS4 solution and their mass spectrum;Journal of High Energy Physics;2024-01-03

4. On asymptotic dark energy in string theory;Journal of High Energy Physics;2023-09-12

5. Fluxes, vacua, and tadpoles meet Landau-Ginzburg and Fermat;Journal of High Energy Physics;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3