Bulk locality and gauge invariance for boundary-bilocal cubic correlators in higher-spin gravity

Author:

Lysov Vyacheslav,Neiman Yasha

Abstract

Abstract We consider type-A higher-spin gravity in 4 dimensions, holographically dual to a free O(N) vector model. In this theory, the cubic correlators of higher-spin boundary currents are reproduced in the bulk by the Sleight-Taronna cubic vertex. We extend these cubic correlators from local boundary currents to bilocal boundary operators, which contain the tower of local currents in their Taylor expansion. In the bulk, these boundary bilocals are represented by linearized Didenko-Vasiliev (DV) “black holes”. We argue that the cubic correlators are still described by local bulk structures, which include a new vertex coupling two higher-spin fields to the “worldline” of a DV solution. As an illustration of the general argument, we analyze numerically the correlator of two local scalars and one bilocal. We also prove a gauge-invariance property of the Sleight-Taronna vertex outside its original range of applicability: in the absence of sources, it is invariant not just within transverse-traceless gauge, but rather in general traceless gauge, which in particular includes the DV solution away from its “worldline”.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bilinear Fronsdal currents in the AdS4 higher-spin theory;Journal of High Energy Physics;2024-07-26

2. On z-dominance, shift symmetry and spin locality in higher-spin theory;Journal of High Energy Physics;2023-05-16

3. New Diagrammatic Framework for Higher-Spin Gravity;Physical Review Letters;2023-04-25

4. Classical Double Copy and Higher-Spin Fields;Physical Review Letters;2023-02-17

5. Constraining higher-spin S-matrices;Journal of High Energy Physics;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3