Holographic weak measurement

Author:

Sun Xinyu,Jian Shao-KaiORCID

Abstract

Abstract In this paper, we study a holographic description of weak measurements in conformal field theories (CFTs). Weak measurements can be viewed as a soft projection that interpolates between an identity operator and a projection operator, and can induce an effective central charge distinct from the unmeasured CFT. We model the weak measurement by an interface brane, separating different geometries dual to the post-measurement state and the unmeasured CFT, respectively. In an infinite system, the weak measurement is related to ICFT via a spacetime rotation. We find that the holographic entanglement entropy with twist operators located on the defect is consistent in both calculations for ICFT and weak measurements. We additionally calculate the boundary entropy via holographic entanglement as well as partition function. In a finite system, the weak measurement can lead to a rich phase diagram: for marginal measurements the emergent brane separates two AdS geometries, while for irrelevant measurements the post-measurement geometry features an AdS spacetime and a black hole spacetime that are separated by the brane. Although the measurement is irrelevant in the later phase, the post-measurement geometry can realize a Python’s lunch. Finally, we discuss the thick brane construction for measurement and higher-dimension extensions of our model. For these general cases, our results above are still shown to be valid.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Universal Bound on Effective Central Charge and Its Saturation;Physical Review Letters;2024-08-30

2. Quantum Criticality Under Imperfect Teleportation;PRX Quantum;2024-07-12

3. Subsystem complexity and measurements in holography;Journal of High Energy Physics;2024-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3