Intrinsic approach to 1 + 1D Carrollian Conformal Field Theory

Author:

Saha AmartyaORCID

Abstract

Abstract The 3D Bondi-Metzner-Sachs (BMS3) algebra that is the asymptotic symmetry algebra at null infinity of the 1 + 2D asymptotically flat space-time is isomorphic to the 1 + 1D Carrollian conformal algebra. Building on this connection, various preexisting results in the BMS3-invariant field theories are reconsidered in light of a purely Carrollian perspective in this paper. In direct analogy to the covariant transformation laws of the Lorentzian tensors, the flat Carrollian multiplets are defined and their conformal transformation properties are established. A first-principle derivation of the Ward identities in a 1 + 1D Carrollian conformal field theory (CCFT) is presented. This derivation introduces the use of the complex contour-integrals (over the space-variable) that provide a strong analytic handle to CCFT. The temporal step-function factors appearing in these Ward identities enable the translation of the operator product expansions (OPEs) into the language of the operator commutation relations and vice versa, via a contour-integral prescription. Motivated by the properties of these step-functions, the -forms of the Ward identities and OPEs are proposed that permit for the hassle-free use of the algebraic properties of the latter. Finally, utilizing the computational techniques developed, it is shown that the modes of the quantum energy-momentum tensor operator generate the centrally extended version of the infinite-dimensional 1 + 1D Carrollian conformal algebra.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Wilson? Carroll from current deformations;Journal of High Energy Physics;2024-06-28

2. Symmetry resolution in non-Lorentzian field theories;Journal of High Energy Physics;2024-06-19

3. w1+∞ and Carrollian holography;Journal of High Energy Physics;2024-05-13

4. Irrelevant and marginal deformed BMS field theories;Journal of High Energy Physics;2024-04-26

5. Extended kinematical 3D gravity theories;Journal of High Energy Physics;2024-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3