Abstract
Abstract
We revisit the next-to-leading order (NLO) perturbative QCD corrections for the deeply virtual meson production (DVMP) process, exploring its phenomenology both in isolation and in a multichannel fit combined with deeply virtual Compton scattering (DVCS). Our approach involves the conformal partial wave (CPaW) formalism, which allows for the straightforward inclusion of higher-order contributions and evolutionary effects. Our findings indicate that a description of the longitudinal component of the vector meson DVMP cross-section at high energies is achievable only at NLO within the standard collinear approach. Furthermore, we demonstrate a simultaneous description of DIS, DVCS, and DVMP processes, providing insights into the proton structure described at NLO by unique universal generalized parton distribution (GPD) functions.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献