Author:
Yanagida Tsutomu T.,Yin Wen,Yokozaki Norimi
Abstract
Abstract
We study the phenomenological consequences of the supersymmetric (SUSY) E
7
/SU(5) × U(1)3 non-linear sigma model coupled to supergravity, where the three gen- erations of quark and lepton chiral multiplets appear as (pseudo) Nambu Goldstone (NG) multiplets, that is, the origin of the three families is explained. To break SUSY, we intro- duce a SUSY breaking field charged under some symmetry avoiding the Polonyi problem. The gaugino mass spectrum is almost uniquely determined when one requires the electroweak vacuum to be (meta)stable: it would be a miracle that the mass difference between the bino and wino turns out to be within
$$ \mathcal{O} $$
O
(1)% at the low energy. Thus, a bino-wino coannihilation is naturally predicted, which can explain the correct relic abundance of dark matter. Moreover, we find that the bottom-tau Yukawa couplings and the gauge couplings are unified up to
$$ \mathcal{O} $$
O
(1)% in most of the viable region. This scenario can be fully tested at the LHC and future collider experiments since the gauginos and some of the pseudo-NG bosons are light. An axion-like multiplet, which can be identified with the QCD axion, is also predicted.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献