Abstract
Abstract
We consider a broad family of higher-derivative extensions of four-dimensional Einstein gravity and study the multipole moments of rotating black holes therein. We carefully show that the various definitions of multipoles carry over from general relativity, and compute these multipoles for higher-derivative Kerr using the ACMC expansion formalism. We obtain the mass Mn and current Sn multipoles as a series expansions in the dimensionless spin; in some cases we are able to resum these series into closed-form expressions. Moreover, we observe the existence of intriguing relations between the corrections to the parity-odd multipoles S2n ≠ 0 and M2n+1 ≠ 0 that break equatorial symmetry, and the parity-preserving corrections that only modify S2n+1 and M2n. Further, we comment on the higher-derivative corrections to multipole ratios for Kerr, and we discuss the phenomenological implications of the corrections to the multipole moments for current and future gravitational wave experiments.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference77 articles.
1. B.P. Abbott et al., LIGO: the laser interferometer gravitational-wave observatory, Rep. Prog. Phys. 72 (2009) 076901
2. K. Danzmann, LISA: Laser interferometer space antenna for gravitational wave measurements, Class. Quant. Grav. 13 (1996) A247 [INSPIRE].
3. V. Kalogera et al., The Next Generation Global Gravitational Wave Observatory: The Science Book, arXiv:2111.06990 [INSPIRE].
4. V. Cardoso and P. Pani, Testing the nature of dark compact objects: a status report, Living Rev. Rel. 22 (2019) 4 [arXiv:1904.05363] [INSPIRE].
5. D.R. Mayerson, Fuzzballs and Observations, Gen. Rel. Grav. 52 (2020) 115 [arXiv:2010.09736] [INSPIRE].
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献