Breaking mirror twin hypercharge

Author:

Batell Brian,Verhaaren Christopher B.ORCID

Abstract

Abstract The Twin Higgs scenario stabilizes the Higgs mass through an approximate global symmetry and has remained natural in the face of increasingly stringent LHC bounds on colored top partners. Two basic structural questions in this framework concern the nature of the twin hypercharge gauge symmetry and the origin of the ℤ2 symmetry breaking needed to achieve the correct vacuum alignment. Both questions are addressed in a simple extension of the Mirror Twin Higgs model with an exact ℤ2 symmetry and a scalar field that spontaneously breaks both twin hypercharge and ℤ2. Due to the ℤ2 symmetry and an approximate U(2) symmetry in the potential, a new hypercharge scalar appears in the visible sector and, like the Higgs, is a pseudo-Nambu-Goldstone boson with a weak-scale mass. Couplings between the hypercharge scalar and matter provide a new dynamical source of twin sector fermion masses. Depending on the nature and size of these couplings, a variety of experimental signatures may arise, including quark and lepton flavor violation, neutrino masses and mixings as well as direct collider probes of the hypercharged scalar. These signals are correlated with the twin matter spectrum, which can differ dramatically from the visible one, including dynamical realizations of fraternal-like scenarios.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Baryogenesis and dark matter in the mirror twin Higgs;Journal of High Energy Physics;2023-11-08

2. Twin cogenesis;Communications in Theoretical Physics;2023-04-01

3. A Portalino to the Twin Sector;Journal of High Energy Physics;2023-03-29

4. Leptonic flavor changing processes ℓi → ℓjγ and ℓi → ℓjℓkℓl in the Twin Higgs models;Modern Physics Letters A;2023-02-20

5. Gravitational waves from domain walls in Pulsar Timing Array datasets;Journal of Cosmology and Astroparticle Physics;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3