Author:
Coşkun Ü. H.,Kürkçüoğlu S.,Toga G. C.,Ünal G.
Abstract
Abstract
We examine the 5d Yang-Mills matrix model in 0 + 1-dimensions with U(4N) gauge symmetry and a mass deformation term. We determine the explicit SU(4) ≈ SO(6) equivariant parametrizations of the gauge field and the fluctuations about the classical four concentric fuzzy four sphere configuration and obtain the low energy reduced actions(LEAs) by tracing over the S
F
4
s for the first five lowest matrix levels. The LEAs so obtained have potentials bounded from below indicating that the equivariant fluctuations about the S
F
4
do not lead to any instabilities. These reduced systems exhibit chaos, which we reveal by computing their Lyapunov exponents. Using our numerical results, we explore various aspects of chaotic dynamics emerging from the LEAs. In particular, we model how the largest Lyapunov exponents change as a function of the energy. We also show that, in the Euclidean signature, the LEAs support the usual kink type soliton solutions, i.e. instantons in 1+ 0-dimensions, which may be seen as the imprints of the topological fluxes penetrating the concentric S
F
4
s due to the equivariance conditions, and preventing them to shrink to zero radius. Relaxing the Gauss law constraint in the LEAs in the manner recently discussed by Maldacena and Milekhin leads to Goldstone bosons.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献