Abstract
Abstract
We study particle theories that have a tower of worldline internal degrees of freedom. Such a theory can arise when the worldsheet of closed strings is dimensionally reduced to a worldline, in which case the tower is infinite with regularly spaced masses. But our discussion is significantly more general than this, and there is scope to consider all kinds of internal degrees of freedom carried by the propagating particle. For example it is possible to consider towers corresponding to other geometries, or towers with no obvious geometric interpretation that still yield a modular invariant theory. Truncated towers generate non-local particle theories that share with string theory the property of having a Gross-Mende-like saddle point in their amplitudes. This provides a novel framework for constructing exotic theories which may have desirable properties such as finiteness and modular invariance.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference35 articles.
1. R.P. Feynman, Mathematical formulation of the quantum theory of electromagnetic interaction, Phys. Rev. 80 (1950) 440 [INSPIRE].
2. I.K. Affleck, O. Alvarez and N.S. Manton, Pair Production at Strong Coupling in Weak External Fields, Nucl. Phys. B 197 (1982) 509 [INSPIRE].
3. Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].
4. M.J. Strassler, Field theory without Feynman diagrams: One loop effective actions, Nucl. Phys. B 385 (1992) 145 [hep-ph/9205205] [INSPIRE].
5. M.G. Schmidt and C. Schubert, On the calculation of effective actions by string methods, Phys. Lett. B 318 (1993) 438 [hep-th/9309055] [INSPIRE].
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献