Black holes in Sol minore

Author:

Faedo Federico,Farotti Daniele Angelo,Klemm Silke

Abstract

Abstract We consider black holes in five-dimensional N = 2 U(1)-gauged supergravity coupled to vector multiplets, with horizons that are homogeneous but not isotropic. We write down the equations of motion for electric and magnetic ansätze, and solve them explicitely for the case of pure gauged supergravity with magnetic U(1) field strength and Sol horizon. The thermodynamics of the resulting solution, which exhibits anisotropic scaling, is discussed. If the horizon is compactified, the geometry approaches asymptotically a torus bundle over AdS3. Furthermore, we prove a no-go theorem that states the nonexistence of supersymmetric, static, Sol-invariant, electrically or magnetically charged solutions with spatial cross-sections modelled on solvegeometry. Finally, we study the attractor mechanism for extremal static non-BPS black holes with nil- or solvegeometry horizons. It turns out that there are no such attractors for purely electric field strengths, while in the magnetic case there are attractor geometries, where the values of the scalar fields on the horizon are computed by extremization of an effective potential V eff, which contains the charges as well as the scalar potential of the gauged supergravity theory. The entropy density of the extremal black hole is then given by the value of V eff in the extremum.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New anisotropic Gauss–Bonnet black holes in five dimensions at the critical point;The European Physical Journal C;2024-01-25

2. Rotating black holes with Nil or SL(2, ℝ) horizons;Journal of High Energy Physics;2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3