Abstract
Abstract
Solar nuclear reactions can occasionally produce sub-MeV elusive beyond the Standard Model particles that escape the solar interior without further interactions. This study focuses on massive spin-one particles. We construct the general theoretical framework and identify two crucial mixing sources involving the photon, which facilitate communication between the hidden and visible sectors: kinetic mixing with the photon, and plasma-induced mixing due to thermal electron loops. For both cases, we focus on the second stage of the solar proton-proton chain and evaluate the fluxes of monochromatic 5.49 MeV hidden vectors produced by the p(d,3 He)γ′ nuclear reaction. We then investigate their terrestrial detection via Compton-like scatterings. The incoming fluxes are polarized, and we evaluate the cross sections for Compton-like scatterings for transverse and longitudinal vectors. Finally, we apply this framework to a concrete case by investigating the sensitivity of the forthcoming Jiangmen Underground Neutrino Observatory (JUNO) experiment and identifying parameter space where current terrestrial bounds will be improved.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献