Entanglement asymmetry in the ordered phase of many-body systems: the Ising field theory

Author:

Capizzi LucaORCID,Mazzoni Michele

Abstract

Abstract Global symmetries of quantum many-body systems can be spontaneously broken. Whenever this mechanism happens, the ground state is degenerate and one encounters an ordered phase. In this study, our objective is to investigate this phenomenon by examining the entanglement asymmetry of a specific region. This quantity, which has recently been introduced in the context of U(1) symmetry breaking, is extended to encompass arbitrary finite groups G. We also establish a field theoretic framework in the replica theory using twist operators. We explicitly demonstrate our construction in the ordered phase of the Ising field theory in 1+1 dimensions, where a ℤ2 symmetry is spontaneously broken, and we employ a form factor bootstrap approach to characterise a family of composite twist fields. Analytical predictions are provided for the entanglement asymmetry of an interval in the Ising model as the length of the interval becomes large. We also propose a general conjecture relating the entanglement asymmetry and the number of degenerate vacua, expected to be valid for a large class of states, and we prove it explicitly in some cases.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3