Reinterpreting the ATLAS bounds on heavy neutral leptons in a realistic neutrino oscillation model

Author:

Tastet J.-L.ORCID,Ruchayskiy O.,Timiryasov I.

Abstract

Abstract Heavy neutral leptons (HNLs) are hypothetical particles, motivated in the first place by their ability to explain neutrino oscillations. Experimental searches for HNLs are typically conducted under the assumption of a single HNL mixing with a single neutrino flavor. However, the resulting exclusion limits may not directly constrain the corresponding mixing angles in realistic HNL models — those which can explain neutrino oscillations. The reinterpretation of the results of these experimental searches turns out to be a non-trivial task, that requires significant knowledge of the details of the experiment. In this work, we perform a reinterpretation of the latest ATLAS search for HNLs decaying promptly to a tri-lepton final state. We show that in a realistic model with two HNLs, the actual limits can vary by several orders of magnitude depending on the free parameters of the model. Marginalizing over the unknown model parameters leads to an exclusion limit on the total mixing angle which can be up to 3 orders of magnitude weaker than the limits reported in ref. [1]. This demonstrates that the reinterpretation of results from experimental searches is a necessary step to obtain meaningful limits on realistic models. We detail a few steps that can be taken by experimental collaborations in order to simplify the reuse of their results.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference119 articles.

1. ATLAS collaboration, Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector, JHEP 10 (2019) 265 [arXiv:1905.09787] [INSPIRE].

2. M. Shaposhnikov, Is there a new physics between electroweak and Planck scales?, in Astroparticle Physics: Current Issues, 2007 (APCI07), (2007) [arXiv:0708.3550] [INSPIRE].

3. S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].

4. J. Beacham et al., Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report, J. Phys. G 47 (2020) 010501 [arXiv:1901.09966] [INSPIRE].

5. R. K. Ellis et al., Physics Briefing Book : Input for the European Strategy for Particle Physics Update 2020, arXiv:1910.11775 [INSPIRE].

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3