Master equations and stability of Einstein-Maxwell-scalar black holes

Author:

Jansen AronORCID,Rostworowski Andrzej,Rutkowski Mieszko

Abstract

Abstract We derive master equations for linear perturbations in Einstein-Maxwell scalar theory, for any spacetime dimension D and any background with a maximally symmetric n = (D - 2)-dimensional spatial component. This is done by expressing all fluctuations analytically in terms of several master scalars. The resulting master equations are Klein­ Gordon equations, with non-derivative couplings given by a potential matrix of size 3, 2 and 1 for the scalar, vector and tensor sectors respectively. Furthermore, these potential matrices turn out to be symmetric, and positivity of the eigenvalues is sufficient (though not necessary) for linear stability of the background under consideration. In general these equations cannot be fully decoupled, only in specific cases such as Reissner-Nordstrom, where we reproduce the Kodama-Ishibashi master equations. Finally we use this to prove stability in the vector sector of the GMGHS black hole and of Einstein-scalar theories in general.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference36 articles.

1. T. Regge and J.A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev.108 (1957) 1063 [INSPIRE].

2. F.J. Zerilli, Effective potential for even parity Regge- Wheeler gravitational perturbation equations, Phys. Rev. Lett.24 (1970) 737 [INSPIRE].

3. F.J. Zerilli, Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics, Phys. Rev.D 2 (1970) 2141 [INSPIRE].

4. V. Moncrief, Gravitational perturbations of spherically symmetric systems. I. The exterior problem, Annals Phys.88 (1974) 323 [INSPIRE].

5. F. Mellor and I. Moss, Stability of black holes in de Sitter space, Phys. Rev.D 41 (1990) 403 [INSPIRE].

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability and phase transition of black holes in Einstein-Maxwell-dilaton gravity;Nuclear Physics B;2024-09

2. Relativistic hydrodynamics with phase transition;The European Physical Journal C;2024-08-19

3. The pseudospectra of black holes in AdS;Journal of High Energy Physics;2024-05-16

4. Chaos near to the critical point: butterfly effect and pole-skipping;The European Physical Journal C;2024-05-14

5. Master equations for de Sitter DFPs;Journal of High Energy Physics;2022-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3