Abstract
Abstract
We reformulate the monodromy relations of open-string scattering amplitudes as boundary terms of twisted homologies on the configuration spaces of Riemann surfaces of arbitrary genus. This allows us to write explicit linear relations involving loop integrands of open-string theories for any number of external particles and, for the first time, to arbitrary genus. In the non-planar sector, these relations contain seemingly unphysical contributions, which we argue clarify mismatches in previous literature. The text is mostly self-contained and presents a concise introduction to twisted homologies. As a result of this powerful formulation, we can propose estimates on the number of independent loop integrands based on Euler characteristics of the relevant configuration spaces, leading to a higher-genus generalization of the famous (n − 3)! result at genus zero.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献