Positivity, Grassmannian geometry and simplex-like structures of scattering amplitudes

Author:

Rao JunjieORCID

Abstract

Abstract This article revisits and elaborates the significant role of positive geometry of momentum twistor Grassmannian for planar $$ \mathcal{N}=4 $$ N = 4 SYM scattering amplitudes. First we establish the fundamentals of positive Grassmannian geometry for tree amplitudes, including the ubiquitous Plücker coordinates and the representation of reduced Grassmannian geometry. Then we formulate this subject, without making reference to on-shell diagrams and decorated permutations, around these four major facets: 1. Deriving the tree and 1-loop BCFW recursion relations solely from positivity, after introducing the simple building blocks called positive components for a positive matrix. 2. Applying Grassmannian geometry and Plücker coordinates to determine the signs of N2MHV homological identities, which interconnect various Yangian invariants. It reveals that most of the signs are in fact the secret incarnation of the simple 6-term NMHV identity. 3. Deriving the stacking positivity relation, which is powerful for parameterizing matrix representatives in terms of positive variables in the d log form. It will be used with the reduced Grassmannian geometry representation to produce the positive matrix of a given geometric configuration, which is an independent approach besides the combinatoric way involving a sequence of BCFW bridges. 4. Introducing an elegant and highly refined formalism of BCFW recursion relation for tree amplitudes, which reveals its two-fold simplex-like structures. First, the BCFW contour in terms of (reduced) Grassmannian geometry representatives is delicately dissected into a triangle-shape sum, as only a small fraction of the sum needs to be explicitly identified. Second, this fraction can be further dissected, according to different growing modes with corresponding growing parameters. The growing modes possess the shapes of solid simplices of various dimensions, with which infinite number of BCFW cells can be entirely captured by the characteristic objects called fully-spanning cells. We find that for a given k, beyond n =4 k+1 there is no more new fully-spanning cell, which signifies the essential termination of the recursive growth of BCFW cells. As n increases beyond the termination point, the BCFW contour simply replicates itself according to the simplex-like patterns, which enables us to master all BCFW cells once for all without actually identifying most of them.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3