Abstract
AbstractAutomatic sequences are not suitable sequences for cryptographic applications since both their subword complexity and their expansion complexity are small, and their correlation measure of order 2 is large. These sequences are highly predictable despite having a large maximum order complexity. However, recent results show that polynomial subsequences of automatic sequences, such as the Thue–Morse sequence, are better candidates for pseudorandom sequences. A natural generalization of automatic sequences are morphic sequences, given by a fixed point of a prolongeable morphism that is not necessarily uniform. In this paper we prove a lower bound for the maximum order complexity of the sum of digits function in Zeckendorf base which is an example of a morphic sequence. We also prove that the polynomial subsequences of this sequence keep large maximum order complexity, such as the Thue–Morse sequence.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Maximum-Order Complexity and 2-Adic Complexity;IEEE Transactions on Information Theory;2024-08
2. Note on a Fibonacci parity sequence;Cryptography and Communications;2022-07-26
3. Pseudorandom sequences derived from automatic sequences;Cryptography and Communications;2022-04-19