Author:
Gillot Valérie,Langevin Philippe
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications
Reference9 articles.
1. Dougherty, R., Mauldin, R.D., Tiefenbruck, M.: The covering radius of the Reed-Muller code $$RM(m-4, m)$$ in $$RM(m-3, m)$$. IEEE Trans. Inform. Theory. 68(1), 560–571 (2022)
2. Gao, J., Kan, H., Li, Y., Wang, Q.: The covering radius of the third-order reed-muller code rm(3,7) is 20. IEEE Trans. Inf. Theory, 69(6):3663–3673, 2023
3. Gillot, V., Langevin, P.: Classification of $$b(s,t,7)$$. (2022). http://langevin.univ-tln.fr/project/agl7/aglclass.html
4. Hou, X.-D.: AGL($$m,2$$) acting on $$R(r, m)/R(s, m)$$. J. Algebra. 171(3), 921–938 (1995)
5. Graduate Studies in Mathematics;X-D Hou,2018
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Covering radius of $ RM(4,8) $;Advances in Mathematics of Communications;2023