Abstract
AbstractStrong external difference families (SEDFs) have applications to cryptography and are rich combinatorial structures in their own right. We extend the definition of SEDF from abelian groups to all finite groups, and introduce the concept of equivalence. We prove new recursive constructions for SEDFs and generalized SEDFs (GSEDFs) in cyclic groups, and present the first family of non-abelian SEDFs. We prove there exist at least two non-equivalent (k2 + 1,2,k,1)-SEDFs for every k > 2, and begin the task of enumerating SEDFs, via a computational approach which yields complete results for all groups up to order 24.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献