1. Weiss, G. M., Yoneda, K., and Hayajneh, T., “Smartphone and smartwatch-based biometrics using activities of daily living,” IEEE Access, 7, 133,190–133,202 (2019).
2. Russian Federation Certificate of State Registration of Computer Program No. 2022666909;AV Kuzmin,2022
3. Sushkova, O. S., Gabova, A. V., Zhavoronkova, L. A, Karabanov, A. V., Kershner, I. A., Morozov, A. A., Sinkin, M. V., Tolmacheva, R. A., Chigaleichik, L. A., and Obukhov, Yu. V., “ Methods for analyzing the wavelet spectra of biomedical signals to extract diagnostic information about certain brain pathologies,” Meditsinsk. Tekhn., No. 1 (325), 14–17 (2021).
4. Chen, S. W., Wang, S. L., Qi, X. Z., Samuri, S. M., and Yang, C., “Review of ECG detection and classification based on deep learning: Coherent taxonomy, motivation, open challenges and recommendations,” Biomed. Signal Proc. Contr., 74, Art. ID 103493 (2022).
5. Biomedical applications of accelerometers. A Bibliographic List (Based on IEEE Xplore data, Springer, Web of Science, and Scopus for 2017–2022); official website of Penza State University; https://dep_ivs.pnzgu.ru/files/dep_ivs.pnzgu.ru/biomedical_accelerometers(1).pdf (date accessed: May 2, 2023).