A branch and bound algorithm for robust binary optimization with budget uncertainty

Author:

Büsing ChristinaORCID,Gersing TimoORCID,Koster Arie M. C. A.ORCID

Abstract

AbstractSince its introduction in the early 2000s, robust optimization with budget uncertainty has received a lot of attention. This is due to the intuitive construction of the uncertainty sets and the existence of a compact robust reformulation for (mixed-integer) linear programs. However, despite its compactness, the reformulation performs poorly when solving robust integer problems due to its weak linear relaxation. To overcome the problems arising from the weak formulation, we propose a bilinear formulation for robust binary programming, which is as strong as theoretically possible. From this bilinear formulation, we derive strong linear formulations as well as structural properties for robust binary optimization problems, which we use within a tailored branch and bound algorithm. We test our algorithm’s performance together with other approaches from the literature on a diverse set of “robustified” real-world instances from the MIPLIB 2017. Our computational study, which is the first to compare many sophisticated approaches on a broad set of instances, shows that our algorithm outperforms existing approaches by far. Furthermore, we show that the fundamental structural properties proven in this paper can be used to substantially improve the approaches from the literature. This highlights the relevance of our findings, not only for the tested algorithms, but also for future research on robust optimization. To encourage the use of our algorithms for solving robust optimization problems and our instances for benchmarking, we make all materials freely available online.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Software,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recycling valid inequalities for robust combinatorial optimization with budgeted uncertainty;Mathematical Programming;2024-08-29

2. General Solution Methods;International Series in Operations Research & Management Science;2024

3. Recycling Inequalities for Robust Combinatorial Optimization with Budget Uncertainty;Integer Programming and Combinatorial Optimization;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3