Asynchronous Lagrangian scenario decomposition

Author:

Aravena Ignacio,Papavasiliou Anthony

Abstract

AbstractWe present a distributed asynchronous algorithm for solving two-stage stochastic mixed-integer programs (SMIP) using scenario decomposition, aimed at industrial-scale instances of the stochastic unit commitment (SUC) problem. The algorithm is motivated by large differences in run times observed among scenario subproblems of SUC instances, which can result in inefficient use of distributed computing resources by synchronous parallel algorithms. Our algorithm performs dual iterations asynchronously using a block-coordinate subgradient descent method which allows performing block-coordinate updates using delayed information, while candidate primal solutions are recovered from the solutions of scenario subproblems using heuristics. We present a high performance computing implementation of the asynchronous algorithm, detailing the operations performed by each parallel process and the communication mechanisms among them. We conduct numerical experiments using SUC instances of the Western Electricity Coordinating Council system with up to 1000 scenarios and of the Central Western European system with up to 120 scenarios. We also conduct numerical experiments on generic SMIP instances from the SIPLIB library (DCAP and SSLP). The results demonstrate the general applicability of the proposed algorithm and its ability to solve industrial-scale SUC instances within operationally acceptable time frames. Moreover, we find that an equivalent synchronous parallel algorithm would leave cores idle up to 80.4% of the time on our realistic test instances, an observation which underscores the need for designing asynchronous optimization schemes in order to fully exploit distributed computing on real world applications.

Publisher

Springer Science and Business Media LLC

Subject

Software,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3