LMBOPT: a limited memory method for bound-constrained optimization

Author:

Kimiaei Morteza,Neumaier Arnold,Azmi Behzad

Abstract

AbstractRecently, Neumaier and Azmi gave a comprehensive convergence theory for a generic algorithm for bound constrained optimization problems with a continuously differentiable objective function. The algorithm combines an active set strategy with a gradient-free line search along a piecewise linear search path defined by directions chosen to reduce zigzagging. This paper describes , an efficient implementation of this scheme. It employs new limited memory techniques for computing the search directions, improves by adding various safeguards relevant when finite precision arithmetic is used, and adds many practical enhancements in other details. The paper compares and several other solvers on the unconstrained and bound constrained problems from the collection and makes recommendations on which solver to use and when. Depending on the problem class, the problem dimension, and the precise goal, the best solvers are , , and .

Funder

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Software,Theoretical Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An active set method for bound-constrained optimization;Optimization Methods and Software;2024-04-26

2. An improvement of the Goldstein line search;Optimization Letters;2024-04-05

3. Globally linearly convergent nonlinear conjugate gradients without Wolfe line search;Numerical Algorithms;2024-02-09

4. New Subspace Method for Unconstrained Derivative-Free Optimization;ACM Transactions on Mathematical Software;2023-12-15

5. Optimized Approach for Image Design Processing in Optical Networks: A Comparative Study;Applied Mathematics and Nonlinear Sciences;2023-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3