Adaptive large neighborhood search for mixed integer programming

Author:

Hendel Gregor

Abstract

AbstractLarge Neighborhood Search (LNS) heuristics are among the most powerful but also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver adaptively concentrates its limited computational budget by learning which LNS heuristics work best for the MIP problem at hand. To this end, this work introduces Adaptive Large Neighborhood Search (ALNS) for MIP, a primal heuristic that acts as a framework for eight popular LNS heuristics such as Local Branching and Relaxation Induced Neighborhood Search (RINS). We distinguish the available LNS heuristics by their individual search spaces, which we call auxiliary problems. The decision which auxiliary problem should be executed is guided by selection strategies for the multi armed bandit problem, a related optimization problem during which suitable actions have to be chosen to maximize a reward function. In this paper, we propose an LNS-specific reward function to learn to distinguish between the available auxiliary problems based on successful calls and failures. A second, algorithmic enhancement is a generic variable fixing prioritization, which ALNS employs to adjust the subproblem complexity as needed. This is particularly useful for some LNS problems which do not fix variables by themselves. The proposed primal heuristic has been implemented within the MIP solver SCIP. An extensive computational study is conducted to compare different LNS strategies within our ALNS framework on a large set of publicly available MIP instances from the MIPLIB and Coral benchmark sets. The results of this simulation are used to calibrate the parameters of the bandit selection strategies. A second computational experiment shows the computational benefits of the proposed ALNS framework within the MIP solver SCIP.

Funder

Konrad-Zuse-Zentrum für Informationstechnik

Publisher

Springer Science and Business Media LLC

Subject

Software,Theoretical Computer Science

Reference42 articles.

1. Borndörfer, R., Hoppmann, H., Karbstein, M.: A configuration model for the line planning problem. In: D. Frigioni and S. Stiller, (eds), ATMOS 2013 - 13th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, volume 33, pp. 68 – 79, (2013)

2. COIN-OR branch-and-cut MIP solver, (2016). https://projects.coin-or.org/Cbc

3. IBM ILOG CPLEX Optimizer, (2020). http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

4. GUROBI Optimizer, (2020). http://www.gurobi.com/products/gurobi-optimizer/gurobi-overview

5. Achterberg, T.: SCIP: Solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3