1. Agarwal, A., Bartlett, P.L., Ravikumar, P., Wainwright, M.J.: Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. IEEE Trans. Inf. Theory 5(58), 3235–3249 (2012)
2. Axelrod, B., Diakonikolas, I., Stewart, A., Sidiropoulos, A., Valiant, G.: A polynomial time algorithm for log-concave maximum likelihood via locally exponential families. In: Advances in Neural Information Processing Systems, pp. 7723–7735 (2019)
3. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. Second Ser. 19(3), 357–367 (1967)
4. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hull. Tech. rep., Technical Report GCG53, Geometry Center, University of Minnesota (1993)
5. Barber, R.F., Samworth, R.J.: Local continuity of log-concave projection, with applications to estimation under model misspecification. Bernoulli, to appear (2021)