A new computational framework for log-concave density estimation

Author:

Chen Wenyu,Mazumder Rahul,Samworth Richard J.

Abstract

AbstractIn statistics, log-concave density estimation is a central problem within the field of nonparametric inference under shape constraints. Despite great progress in recent years on the statistical theory of the canonical estimator, namely the log-concave maximum likelihood estimator, adoption of this method has been hampered by the complexities of the non-smooth convex optimization problem that underpins its computation. We provide enhanced understanding of the structural properties of this optimization problem, which motivates the proposal of new algorithms, based on both randomized and Nesterov smoothing, combined with an appropriate integral discretization of increasing accuracy. We prove that these methods enjoy, both with high probability and in expectation, a convergence rate of order 1/T up to logarithmic factors on the objective function scale, where T denotes the number of iterations. The benefits of our new computational framework are demonstrated on both synthetic and real data, and our implementation is available in a github repository (Log-Concave Computation).

Funder

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

Reference74 articles.

1. Agarwal, A., Bartlett, P.L., Ravikumar, P., Wainwright, M.J.: Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. IEEE Trans. Inf. Theory 5(58), 3235–3249 (2012)

2. Axelrod, B., Diakonikolas, I., Stewart, A., Sidiropoulos, A., Valiant, G.: A polynomial time algorithm for log-concave maximum likelihood via locally exponential families. In: Advances in Neural Information Processing Systems, pp. 7723–7735 (2019)

3. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. Second Ser. 19(3), 357–367 (1967)

4. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hull. Tech. rep., Technical Report GCG53, Geometry Center, University of Minnesota (1993)

5. Barber, R.F., Samworth, R.J.: Local continuity of log-concave projection, with applications to estimation under model misspecification. Bernoulli, to appear (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3