Author:
Decker Thomas,Krandick Werner
Reference18 articles.
1. Collins, G.E. (1974). The computing time of the Euclidean algorithm. SIAM Journal on Computing, 3(1), 1–10.
2. Collins, G.E., & Akritas, A.G. (1976). Polynomial real root isolation using Descartes’ rule of signs. In R.D. Jenks (Ed.), Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation (pp. 272–275). ACM.
3. Collins, G.E., Johnson, J.R., & Küchlin, W. (1992). Parallel real root isolation using the coefficient sign variation method. In R.E. Zippel (Ed.), Computer Algebra and Parallelism., LNCS 584, pp. 71–87. Springer-Verlag.
4. Culler, D.E., Karp, R.M., Patterson, D., Sahay, A., Santos, E.E., Schauser, K.E., Subramonian, R., & von Eicken, T. (1996). LogP: A practical model of parallel computation. Communications of the ACM, 39(11),78–85.
5. Decker, T., & Krandick, W. (1999). Parallel real root isolation using the Descartes method. In P. Banerjee, V.K. Prasanna, & B.P. Sinha (Eds.), High Performance Computing-HIPC’99, LNCS 1745, pp. 261–268. Springer-Verlag.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Scalability of Interconnection Network Topologies;Communications in Computer and Information Science;2018