CHEKG: a collaborative and hybrid methodology for engineering modular and fair domain-specific knowledge graphs

Author:

Angelis SotirisORCID,Moraitou EfthymiaORCID,Caridakis GeorgeORCID,Kotis KonstantinosORCID

Abstract

AbstractOntologies constitute the semantic model of Knowledge Graphs (KGs). This structural association indicates the potential existence of methodological analogies in the development of ontologies and KGs. The deployment of fully and well-defined methodologies for KG development based on existing ontology engineering methodologies (OEMs) has been suggested and efficiently applied. However, most of the modern/recent OEMs may not include tasks that (i) empower knowledge workers and domain experts to closely collaborate with ontology engineers and KG specialists for the development and maintenance of KGs, (ii) satisfy special requirements of KG development, such as (a) ensuring modularity and agility of KGs, (b) assessing and mitigating bias at schema and data levels. Toward this aim, the paper presents a methodology for the Collaborative and Hybrid Engineering of Knowledge Graphs (CHEKG), which constitutes a hybrid (schema-centric/top-down and data-driven/bottom-up), collaborative, agile, and iterative approach for developing modular and fair domain-specific KGs. CHEKG contributes to all phases of the KG engineering lifecycle: from the specification of a KG to its exploitation, evaluation, and refinement. The CHEKG methodology is based on the main phases of the extended Human-Centered Collaborative Ontology Engineering Methodology (ext-HCOME), while it adjusts and expands the individual processes and tasks of each phase according to the specialized requirements of KG development. Apart from the presentation of the methodology per se, the paper presents recent work regarding the deployment and evaluation of the CHEKG methodology for the engineering of semantic trajectories as KGs generated from unmanned aerial vehicles (UAVs) data during real cultural heritage documentation scenarios.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3