Omen: discovering sequential patterns with reliable prediction delays

Author:

Cüppers JoschaORCID,Kalofolias JanisORCID,Vreeken JillesORCID

Abstract

AbstractSuppose we are given a discrete-valued time series $$X $$ X of observed events and an equally long binary sequence $$Y $$ Y that indicates whether something of interest happened at that particular point in time. We consider the problem of mining serial episodes, sequential patterns allowing for gaps, from $$X $$ X that reliably predict those interesting events. With reliable we mean patterns that not only predict that an interesting event is likely to follow, but in particular that we can also accurately tell how how long until that event will happen. In other words, we are specifically interested in patterns with a highly skewed distribution of delays between pattern occurrences and predicted events. As it is unlikely that a single pattern can explain a complex real-world progress, we are after the smallest, least redundant set of such patterns that together explain the interesting events well. We formally define this problem in terms of the Minimum Description Length principle, by which we identify the best patterns as those that describe the occurrences of interesting events $$Y $$ Y most succinctly given the data over $$X $$ X . As neither discovering the optimal explanation of $$Y $$ Y given a set of patterns, nor the discovery of optimal pattern set are problems that allow for straightforward optimization, we break the problem in two and propose effective heuristics for both. Through extensive empirical evaluation, we show that both our main method, Omen, and its fast approximation fOmen, work well in practice and both quantitatively and qualitatively beat the state of the art.

Funder

Helmholtz-Zentrum für Informationssicherheit – CISPA gGmbH

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3