Automated database design for document stores with multicriteria optimization

Author:

Hewasinghage ModithaORCID,Nadal Sergi,Abelló Alberto,Zimányi Esteban

Abstract

AbstractDocument stores have gained popularity among NoSQL systems mainly due to the semi-structured data storage structure and the enhanced query capabilities. The database design in document stores expands beyond the first normal form by encouraging de-normalization through nesting. This hinders the process, as the number of alternatives grows exponentially with multiple choices in nesting (including different levels) and referencing (including the direction of the reference). Due to this complexity, document store data design is mostly carried out in trial-and-error or ad-hoc rule-based approaches. However, the choices affect multiple, often conflicting, aspects such as query performance, storage space, and complexity of the documents. To overcome these issues, in this paper, we apply multicriteria optimization. Our approach is driven by a query workload and a set of optimization objectives. First, we formalize a canonical model to represent alternative designs and introduce an algebra of transformations that can systematically modify a design. Then, using these transformations, we implement a local search algorithm driven by a loss function that can propose near-optimal designs with high probability. Finally, we compare our prototype against an existing document store data design solution purely driven by query cost, where our proposed designs have better performance and are more compact with less redundancy.

Funder

European Commission

European Union - NextGenerationEU

Ministerio de Ciencia e Innovación, Spain

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SRank: Guiding Schema Selection in NoSQL Document Stores;Data & Knowledge Engineering;2024-09

2. Schema generation for document stores using workload-driven approach;The Journal of Supercomputing;2023-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3