1. Gil Y et al (2007) On the black art of designing computational workflows. In: Proceedings of the WORKS, New York, NY, USA, pp 53–62. https://doi.org/10.1145/1273360.1273370
2. Silva RF, Casanova H, Chard K, Laney D, Ahn DH, Jha S, Goble CA, Ramakrishnan L, Peterson JL, Enders B, Thain D, Altintas I, Babuji YN, Badia RM, Bonazzi V, Coleman T, Crusoe MR, Deelman E, Natale FD, Tommaso PD, Fahringer T, Filgueira R, Fursin G, Ganose A, Grüning BA, Katz DS, Kuchar OA, Kupresanin A, Ludäscher B, Maheshwari K, Mattoso M, Mehta K, Munson TS, Ozik J, Peterka T, Pottier L, Randles T, Soiland-Reyes S, Tovar B, Turilli M, Uram TD, Vahi K, Wilde M, Wolf M, Wozniak JM (2021) Workflows community summit: bringing the scientific workflows community together. CoRR arXiv:2103.09181
3. Oliveira DCM, Liu J, Pacitti E (2019) Data-intensive workflow management: for clouds and data-intensive and scalable computing environments. https://doi.org/10.2200/S00915ED1V01Y201904DTM060
4. Deelman E, Peterka T, Altintas I, Carothers CD, Dam KK, Moreland K, Parashar M, Ramakrishnan L, Taufer M, Vetter JS (2018) The future of scientific workflows. Int J High Perform Comput Appl 32(1):159–175. https://doi.org/10.1177/1094342017704893
5. Deelman E et al (2005) Pegasus: a framework for mapping complex scientific workflows onto distributed systems. Sci Program 13(3):219–237