Learning from automatically labeled data: case study on click fraud prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software
Link
http://link.springer.com/content/pdf/10.1007/s10115-015-0827-6.pdf
Reference19 articles.
1. Berrar D (2012) Random forests for the detection of click fraud in online mobile advertising. In: Proceedings of the 1st International Workshop on Fraud Detection in Mobile Advertising, pp. 1–10
2. Berrar D, Lozano J (2013) Significance tests or confidence intervals: which are preferable for the comparison of classifiers? J Exp Theor Artif Intell 25(2):189–206
3. Bootkrajang J, Kabán A (2013) Boosting in the presence of label noise. In: Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, pp. 82–90
4. Bouveyron C, Girard S (2009) Robust supervised classification with mixture models: learning from data with uncertain labels. Pattern Recognit 42:2649–2658
5. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The use of machine learning algorithms to predict financial statement fraud;The British Accounting Review;2024-07
2. A transfer learning framework towards identifying behavioral changes of fraudulent publishers in pay-per-click model of online advertising for click fraud detection;Expert Systems with Applications;2023-12
3. Stacked Generalization Architecture for Predicting Publisher Behaviour from Highly Imbalanced User-Click Data Set for Click Fraud Detection;New Generation Computing;2023-05-29
4. Evaluating Feature Importance to Investigate Publishers Conduct for Detecting Click Fraud;Lecture Notes in Electrical Engineering;2023
5. A Review of Financial Fraud Detection in E-Commerce Using Machine Learning;Intelligent Data Engineering and Analytics;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3