“Just-in-time” generation of datasets by considering structured representations of given consent for GDPR compliance

Author:

Debruyne ChristopheORCID,Pandit Harshvardhan J.ORCID,Lewis DaveORCID,O’Sullivan DeclanORCID

Abstract

AbstractData processing is increasingly becoming the subject of various policies and regulations, such as the European General Data Protection Regulation (GDPR) that came into effect in May 2018. One important aspect of GDPR is informed consent, which captures one’s permission for using one’s personal information for specific data processing purposes. Organizations must demonstrate that they comply with these policies. The fines that come with non-compliance are of such importance that it has driven research in facilitating compliance verification. The state-of-the-art primarily focuses on, for instance, the analysis of prescriptive models and posthoc analysis on logs to check whether data processing is compliant to GDPR. We argue that GDPR compliance can be facilitated by ensuring datasets used in processing activities are compliant with consent from the very start. The problem addressed in this paper is how we can generate datasets that comply with given consent “just-in-time”. We propose RDF and OWL ontologies to represent the consent that an organization has collected and its relationship with data processing purposes. We use this ontology to annotate schemas, allowing us to generate declarative mappings that transform (relational) data into RDF driven by the annotations. We furthermore demonstrate how we can create compliant datasets by altering the results of the mapping. The use of RDF and OWL allows us to implement the entire process in a declarative manner using SPARQL. We have integrated all components in a service that furthermore captures provenance information for each step, further contributing to the transparency that is needed towards facilitating compliance verification. We demonstrate the approach with a synthetic dataset simulating users (re-)giving, withdrawing, and rejecting their consent on data processing purposes of systems. In summary, it is argued that the approach facilitates transparency and compliance verification from the start, reducing the need for posthoc compliance analysis common in the state-of-the-art.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3