Constraining acyclicity of differentiable Bayesian structure learning with topological ordering

Author:

Tran Quang-Duy,Nguyen Phuoc,Duong Bao,Nguyen Thin

Abstract

AbstractDistributional estimates in Bayesian approaches in structure learning have advantages compared to the ones performing point estimates when handling epistemic uncertainty. Differentiable methods for Bayesian structure learning have been developed to enhance the scalability of the inference process and are achieving optimistic outcomes. However, in the differentiable continuous setting, constraining the acyclicity of learned graphs emerges as another challenge. Various works utilize post-hoc penalization scores to impose this constraint which cannot assure acyclicity. The topological ordering of the variables is one type of prior knowledge that contains valuable information about the acyclicity of a directed graph. In this work, we propose a framework to guarantee the acyclicity of inferred graphs by integrating the information from the topological ordering into the inference process. Our integration framework does not interfere with the differentiable inference process while being able to strictly assure the acyclicity of learned graphs and reduce the inference complexity. Our extensive empirical experiments on both synthetic and real data have demonstrated the effectiveness of our approach with preferable results compared to related Bayesian approaches.

Funder

Deakin University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3