Ultra-fast meta-parameter optimization for time series similarity measures with application to nearest neighbour classification

Author:

Tan Chang WeiORCID,Herrmann MatthieuORCID,Webb Geoffrey I.ORCID

Abstract

AbstractNearest neighbour similarity measures are widely used in many time series data analysis applications. They compute a measure of similarity between two time series. Most applications require tuning of these measures’ meta-parameters in order to achieve good performance. However, most measures have at least $$O(L^2)$$ O ( L 2 ) complexity, making them computationally expensive and the process of learning their meta-parameters burdensome, requiring days even for datasets containing only a few thousand series. In this paper, we propose UltraFastMPSearch, a family of algorithms to learn the meta-parameters for different types of time series distance measures. These algorithms are significantly faster than the prior state of the art. Our algorithms build upon the state of the art, exploiting the properties of a new efficient exact algorithm which supports early abandoning and pruning for most time series distance measures. We show on 128 datasets from the UCR archive that our new family of algorithms are up to an order of magnitude faster than the previous state of the art.

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3