On the use of the descriptive variable for enhancing the aggregation of crowdsourced labels

Author:

Beñaran-Muñoz IkerORCID,Hernández-González Jerónimo,Pérez Aritz

Abstract

AbstractThe use of crowdsourcing for annotating data has become a popular and cheap alternative to expert labelling. As a consequence, an aggregation task is required to combine the different labels provided and agree on a single one per example. Most aggregation techniques, including the simple and robust majority voting—to select the label with the largest number of votes—disregard the descriptive information provided by the explanatory variable. In this paper, we propose domain-aware voting, an extension of majority voting which incorporates the descriptive variable and the rest of the instances of the dataset for aggregating the label of every instance. The experimental results with simulated and real-world crowdsourced data suggest that domain-aware voting is a competitive alternative to majority voting, especially when a part of the dataset is unlabelled. We elaborate on practical criteria for the use of domain-aware voting.

Funder

Ministerio de Economía y Competitividad

Eusko Jaurlaritza

Generalitat de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3