How do I update my model? On the resilience of Predictive Process Monitoring models to change

Author:

Rizzi WilliamsORCID,Di Francescomarino Chiara,Ghidini Chiara,Maggi Fabrizio Maria

Abstract

AbstractExisting well-investigated Predictive Process Monitoring techniques typically construct a predictive model based on past process executions and then use this model to predict the future of new ongoing cases, without the possibility of updating it with new cases when they complete their execution. This can make Predictive Process Monitoring too rigid to deal with the variability of processes working in real environments that continuously evolve and/or exhibit new variant behaviours over time. As a solution to this problem, we evaluate the use of three different strategies that allow the periodic rediscovery or incremental construction of the predictive model so as to exploit new available data. The evaluation focuses on the performance of the new learned predictive models, in terms of accuracy and time, against the original one, and uses a number of real and synthetic datasets with and without explicit Concept Drift. The results provide an evidence of the potential of incremental learning algorithms for predicting process monitoring in real environments.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software

Reference49 articles.

1. 3TU Data Center, (2011) BPI Challenge 2011 Event Log. https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

2. Back CO, Debois S, Slaats T (2019) Entropy as a measure of log variability. J. Data Semant. 8(2):129–156. https://doi.org/10.1007/s13740-019-00105-3

3. Bergstra J, Bardenet R, Bengio Y, Kegl B ( 2011) Algorithms for hyper-parameter optimization. In: Shawe Taylor J, Zemel RS, Bartlett PL, Pereira FCN, Weinberger KQ, eds, Advances in Neural Information Processing Systems 24. In: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain., pp 2546–2554

4. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305

5. Bergstra J, Yamins D, & Cox DD ( 2013) Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures, In: Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, Vol. 28 of JMLR Workshop and Conference Proceedings, JMLR.org, pp 115–123

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives;Ophthalmology Glaucoma;2024-08

2. Online Next Activity Prediction Under Concept Drifts;Lecture Notes in Business Information Processing;2024

3. From process mining to augmented process execution;Software and Systems Modeling;2023-11-04

4. Comparison of threshold tuning methods for predictive monitoring;Quality and Reliability Engineering International;2023-09-03

5. DARWIN: An online deep learning approach to handle concept drifts in predictive process monitoring;Engineering Applications of Artificial Intelligence;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3