BPF: a novel cluster boundary points detection method for static and streaming data

Author:

Khalique VijdanORCID,Kitagawa HiroyukiORCID,Amagasa ToshiyukiORCID

Abstract

AbstractData points situated near a cluster boundary are called boundary points and they can represent useful information about the process generating this data. The existing methods of boundary points detection cannot differentiate boundary points from outliers as they are affected by the presence of outliers as well as by the size and density of clusters in the dataset. Also, they require tuning of one or more parameters and prior knowledge of the number of outliers in the dataset for tuning. In this research, a boundary points detection method called BPF is proposed which can effectively differentiate boundary points from outliers and core points. BPF combines the well-known outlier detection method Local Outlier Factor (LOF) with Gravity value to calculate the BPF score. Our proposed algorithm StaticBPF can detect the top-m boundary points in the given dataset. Importantly, StaticBPF requires tuning of only one parameter i.e. the number of nearest neighbors $$(k)$$ ( k ) and can employ the same $$k$$ k used by LOF for outlier detection. This paper also extends BPF for streaming data and proposes StreamBPF. StreamBPF employs a grid structure for improving k-nearest neighbor computation and an incremental method of calculating BPF scores of a subset of data points in a sliding window over data streams. In evaluation, the accuracy of StaticBPF and the runtime efficiency of StreamBPF are evaluated on synthetic and real data where they generally performed better than their competitors.

Funder

New Energy and Industrial Technology Development Organization

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science

JST CREST

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3