Abstract
AbstractProcess mining techniques use event logs as input. When analyzing complex databases, these event logs can be built in many ways. Events need to be grouped into traces corresponding to a case. Different groupings provide different views on the data. Building event logs is usually a time-consuming, manual task. This paper provides a precise view on the case notion on databases, which enables the automatic computation of event logs. Also, it provides a way to assess event log quality, used to rank event logs with respect to their interestingness. The computational cost of building an event log can be avoided by predicting the interestingness of a case notion, before the corresponding event log is computed. This makes it possible to give recommendations to users, so they can focus on the analysis of the most promising process views. Finally, the accuracy of the predictions and the quality of the rankings generated by our unsupervised technique are evaluated in comparison to the existing regression techniques as well as to state-of-the-art learning to rank algorithms from the information retrieval field. The results show that our prediction technique succeeds at discovering interesting event logs and provides valuable recommendations to users about the perspectives on which to focus the efforts during the analysis.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Context-based irregular activity detection in event logs for forensic investigations: An itemset mining approach;Expert Systems with Applications;2023-12
2. Towards Scalable Process Mining Pipelines;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14
3. Preserving complex object-centric graph structures to improve machine learning tasks in process mining;Engineering Applications of Artificial Intelligence;2023-10
4. The Squash Behavior Graph Routing between the Business Process Event Capsules*;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06
5. Optimal hybrid classification model for event recommendation system;Web Intelligence;2023-05-19